当前位置: > qusheng8.com >

  在大多数人看来

2017-05-17 17:04字体:
分享到:

  在大多数人看来,计算机是专门化的新发明:流线型的台式机箱或者咖啡壶内的手指甲般大小的芯片。而对物理学家来说,所有自然系统都是计算机。岩石、原子弹及星系可能不运行Linux程序,但它们却记录和处理信息。每个电子、光子及其他基本粒子都存储数据比特值。
  怎样才算一台计算机?这是一个复杂得惊人的问题。不论你如何精确地定义,它都不只是那些人们通常称为“计算机”的东西,而可以是世界上的任何物体。自然界的物体能解决广义的逻辑和数学问题,尽管它们的输入和输出可能不是对人类有意义的那种形式。自然计算机具有内在的数字性:以离散的量子态存储数据,如基本粒子的自旋。它们的指令集合是量子物理学。
  一个自然系统可以用有限的比特值来描述。在系统内,每个粒子的行为正像一台计算机的逻辑门。它的自旋“轴”能指向两个方向中的一个,因此可以编码一个比特,趣胜娱乐城电游,并且可以翻转,由此执行一个简单的计算操作。
  系统在时间上也是离散的。传递一个比特所取时间是最小量值。精确量值由一个定理所给出,该定理是由信息处理物理学的两位先驱所命名的:一位是美国麻省理工学院的Normam Margolus,另一位是波士顿大学的Lev Levitin。该定理与海森堡的测不准原理相关联(测不准原理描述了诸如对位置与动量或者时间与能量两个相关物理量进行测量时,存在着固有的折衷取舍)。它声称,传递一个比特所取时间t,依赖于你所施加的能量E,施加的能量愈多,时间则可能愈短。数学表达式是T≥h/4E,其中h是普朗克常数(量子理论的主要参数)。例如,一种类型的实验量子计算机用质子来存储信息比特,而用磁场来翻转各比特值,这些运算是在由Margolus-Levitin定理所允许的最小时间内发生的。

  从这个定理出发,可以推导出包括时空的几何极限到整个宇宙的计算能力在内的大量结论。作为预习,试考虑普通物质的计算能力的极限??在此情况内,取占有一升体积的一千克物质,我们且称其为“极端掌上计算机”。通过爱因斯坦著名的质能公式E=mc*2直接转换为能量。如果将这些能量全数投入到翻转的比特位中,则计算机每秒钟能进行10*51次运算;随着能量的降低其运算逐渐变慢。计算机的存储容量可以用热力学计算:当一千克物质转变为一升体积内的能量时,它的温度是10亿开氏度。熵正比于能量除以温度,相应地达到10*31比特的信息量。“极端掌上计算机”是在基本粒子的微观运动及位置中存储信息的,而这些粒子在其体积内四处运动,因此热力学定律所允许的每一个信息比特都投入了使用。
  粒子无论何时发生相互作用,都会引起彼此取向的翻转。这一过程可以借助于诸如C或Java等编程语言来想像:粒子就是一些变量,它们的相互作用就是诸如加法等运算行为。每一比特信息在每秒钟内能翻转10^20次,这等效于时钟速度为100GG赫兹。事实上,系统变化太快,不能由中心时钟来控制。将一个数位比特翻转所用时间,近似等于从一个数位将信号传送到相邻数位的时间。因此,趣胜娱乐城电游,极端便掌上计算机是高度平行运作的:它的运行不像单一处理器,而是像多个处理器的一个巨大阵列;每个处理器的工作几乎独立,并将其运算结果传送到其他相对较慢的处理器上。
  比较来看,一台常规计算机每秒钟翻转其信息比特大约10^9次,存储约10^12比特的信息,且只包含单一的处理器。如果摩尔定律能够保持的话,你的后世子孙将有可能在23世纪中期买到一台极端掌上计算机。工程师们将找到精确控制等离子体内粒子相互作用的方法,而该等离子体要比太阳的核心还要热,而且控制计算机和纠错将占用许多通讯带宽。工程师们也可能已经解决了某些节点封装的问题,趣胜娱乐城电游
  在某种意义上,如果你认对了人,你事实上已经能够买到这样的装置。一千克的一块物质完全转化为能量??这正是一颗2000万吨级氢弹的工作定义。爆炸的核武器正在处理巨量的信息,其初始结构给出其输入,其辐射给出其输出。
  根据宇宙所包含的总能量,劳埃德算出宇宙计算机可以执行10的10120次基本运算。而它能存储的信息则大约有10的1090次比特。如果考虑到所谓的“引力自由度”,那么宇宙计算机还有潜力可挖:存储容量提高到10的10120次比特。这大约相当于10的10103次块10G容量的硬盘,不过,我们似乎没法制造出这么多硬盘,因为宇宙大约只有10的1080次个基本粒子。

上一篇:没有了